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ZooImage, image analysis software, was evaluated to determine its ability to differentiate between

zooplankton groups in preserved zooplankton samples collected in Prince William Sound, Alaska.

A training set of 53 categories were established to train the software for automatic recognition.

Using the Random forest algorithm, ZooImage identified particles in the training set with less

than 13% error. Despite reasonable results with the training set, however, ZooImage was less

effective when this training set was used to identify particles from field-collected zooplankton

samples. When all particles were examined, ZooImage had an accuracy of 81.7% but this

dropped to 63.3% when discard particles (e.g. marine snow and fibers) were removed from total

particles. Copepods, the numerically dominant organisms in most samples, were examined separ-

ately and were correctly identified 67.8% of the time. Further investigation suggested size was

effective in determining identifications; medium size copepods (e.g. Pseudocalanus sp., Acartia sp.)

were accurately identified 73.3% of the time. ZooImage can provide a coarse level of taxonomic

classification and we anticipate continued improvement to this software should further enhance

automatic identification of preserved zooplankton samples.

I N T RO D U C T I O N

Ubiquitous throughout the world’s oceans, zooplankton
serves as the major prey for many higher trophic
level organisms (e.g. Castro-Longoria et al., 2001).
Zooplankton communities vary both temporally and
spatially, thus extensive effort must be undertaken to
describe their broader-scale and seasonal patterns.
Once baselines are established, zooplankton commu-
nities can become sensitive indicators of environmental
conditions (e.g. Marine Zooplankton Colloquium 2,
2001; Benfield et al., 2007). Thus, long-term obser-
vations on planktonic communities may be the key to
understanding how marine environments, and the
higher trophic levels dependent on them, change over
time (Richardson, 2008).
Despite the existence of modern in situ technologies

(see reviews by Sameota et al., 2000; Wiebe and
Benfield, 2003), plankton net systems remain the most
common device for assessing zooplankton abundance.

Collecting zooplankton with nets is a quick and inex-
pensive process, and most studies typically generate a
large number of samples to be analyzed. Identifying
marine zooplankton is, however, a significantly more
time-consuming task that requires considerable taxo-
nomic proficiency to generate accurate results (Ellis et al.,
1994; Zavala-Hamz et al., 1996; Tang et al., 1998).
Ultimately, the constraint in understanding the temporal
and spatial variations of zooplankton populations
becomes not the simple collection of samples, but the
processing effort required to yield basic information on
abundance, biomass and species composition. These
limitations have generated increasing interest in the devel-
opment of methods to automatically identify zooplank-
ton, both in situ and preserved (Culverhouse et al., 2006).

Image analysis of plankton for identification began in
earnest in the early 1980s with attempts to obtain
measurements of particles and utilize discriminant
analysis to identify them. Some early image analysis
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systems did little more than accurately measure and
enumerate particles (Rolke and Lenz, 1984; Estep et al.,
1986). Taking it one step further by using pattern recog-
nition, others achieved 89% accuracy identifying organ-
isms into eight taxonomic groups (Jeffries et al., 1984).
By the early 1990s, imaging techniques were improving
but a real advance was the use of neural networks.
Neural networks are a good choice for identification
problems because they can be taught the correct answer,
are not as readily affected by imperfect images, and are
designed to run complex tasks at high speeds (Simpson
et al., 1992). A successfully trained neural network was
capable of identifying five similar species of tintinnids
(Culverhouse et al., 1994). Despite some success, early
systems were not effective in practical situations because
they were quickly overwhelmed by poor imaging and
slow computational ability. Additionally, the early
systems did not handle large particle numbers and were
restricted to lab prepared samples (Hu and Davis, 2005).
To some extent, early image analysis systems could

only accommodate images that the user arranged to
create the perfect image. The geometric regularity of
phytoplankton made them a good candidate for image
analysis (Gorsky et al., 1989). Unlike phytoplankton,
however, zooplankton present significant identification
challenges because they come in a variety of sizes and
morphologies, with significant distinction between
groups (e.g. euphausiids and copepods), but often great
similarity between related genera (e.g. Neocalanus

spp. and Calanus spp.) (Alvarez-Borrego and Castro-
Longoria, 2003). Not only could the same individual
zooplankter be preserved and oriented in a seemingly
infinite number of postures, but its size, as well as other
morphological attributes, changes during its ontological
development (Grosjean et al., 2004). The morphological
diversity within zooplankton is further increased by the
numerous benthic organisms that release meroplank-
tonic larval stages into the pelagic environment. Finally,
identification of zooplankton is complicated by the
routine presence of large numbers of non-biological
particles and marine snow (Culverhouse et al., 2006).
Image analysis of zooplankton can only be useful if it

can effectively handle real “field” samples. That is, it
has to be able to evaluate zooplankton into several taxo-
nomic groups and genera, regardless of posture or
orientation, and be able to distinguish them from
marine snow and non-biological particles (e.g. debris
and fibers). With recent advances in technology, the
ability to obtain high resolution images with large par-
ticle counts has greatly increased, and rekindled the
desire for automatic zooplankton identification systems.
Such automatic recognition systems rely on training sets
and machine learning algorithms to teach a computer

to predict the identification of zooplankton within a
sample (Hu and Davis, 2006), and have only become
viable due to the ongoing evolution of imaging technol-
ogies in concert with increased processing power of
computers. For zooplankton, much of the research has
concentrated on in situ plankton collectors that are
bundled with automatic recognition software packages
as researchers acknowledged the need to process the
large number of images created by these devices (e.g.
Benfield et al., 1996; Davis et al., 1996; Samson et al.,
2001; Luo et al., 2004; Luo et al., 2005; Hu and Davis,
2006). Unfortunately, these software systems are
designed for specific devices and are not easily compati-
ble with other imaging systems (Benfield et al., 2007).
Additionally, in situ devices are expensive and present
logistical constraints on their operation, so net systems
remain the dominant technology utilized to collect
plankton. A hybrid approach is to subject traditionally
collected zooplankton to image analysis after collection.

ZooImage is a computer-assisted plankton image
analysis software package in development for predicting
taxonomic identification of preserved zooplankton
samples (Grosjean and Denis, 2007, ZooImage User’s
Manual). ZooImage (currently a beta-release) is open
source software bundled with Java-based ImageJ and R,
statistical software. Through the development of
plug-ins for ImageJ, ZooImage can be modified to meet
the requirements of the user and accommodate many
different imaging systems. At present, ZooImage is
capable of accuracies of 70–80% when dealing with
10–20 taxonomic categories of zooplankton in some
ecosystems (Benfield et al., 2007).

The purpose of this project is to assess the abilities of
ZooImage in the ecosystem of Prince William Sound,
AK, where taxonomic diversity is relatively low, and
both the biomass and composition of the zooplankton
community has been linked to the success of local fish-
eries (Boldt and Haldorson, 2003). At present, although
zooplankton is collected routinely, logistical and finan-
cial constraints limit the analysis of these samples
to simple estimation of the displacement volume of the
Prince William Sound zooplankton community.
Determining the composition of zooplankton samples
may provide better information about the prey field for
juvenile pink salmon (Oncorhynchus gorbuscha), such as
large copepods, euphausiids, and pteropods (Cooney
et al., 2001; Boldt and Haldorson, 2002; Armstrong
et al., 2005). Survival of juvenile pink salmon in Prince
William Sound may be dependent in part on the
release of hatchery-reared fish coincident with peak
abundances of their main prey items. Using ZooImage
to analyze zooplankton samples would provide real-time
information that could, therefore, assist in maximizing
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survival of juvenile salmon released from hatcheries.
In this study, we compared taxonomically identified
zooplankton samples with the results of the ZooImage
system to examine whether ZooImage can be used to
identify zooplankton with enough accuracy and taxo-
nomic detail to be useful in determining taxonomic
composition in zooplankton samples obtained from
Prince William Sound.

M AT E R I A L S A N D M E T H O D S

Hardware

Samples were scanned on an Epson Perfection 4990
Photo color flatbed scanner to which a 20 � 25 �
2.8 cm acrylic box-frame was attached with silicone
adhesive. The scanner was mounted to a platform that
allowed it to be tipped so the sample could be emptied
through a pour spout (made from a canted-neck tissue
culture flask and hose) fitted into one end of the acrylic
frame. Initial work determined that crisper images were
determined when zooplankton was scanned directly on
the scanner’s glass, as opposed to elevated several milli-
meters as occurs when animals are in plastic trays/
dishes. All image acquisition and processing was con-
ducted using a 3.2 GHz computer with a Pentium IV
processor and 4 GB of RAM.

ZooImage

ZooImage is designed as open source software so can
be adapted to meet the requirements of the user, and
many of the basic features can be reconfigured to maxi-
mize the performance. This project used the original
version without modification, as we would expect this to
be the typical default for most users. There are three
sections to the ZooImage software system: (i) acquiring
the image, (ii) automatic particle recognition and (iii)
analysis of series for ecological and biological infor-
mation (http://www.sciviews.org/Zoo/PhytoImage).
The first section of ZooImage is designed to import

and process images. Using VueScan 8.3.23 Professional
scanning software, images were scanned at a resolution
of 2400 dpi and 16 bit grayscale (Appendix 1); the
entire image was scanned in ,20 min. ZooImage pro-
cessed the images, created vignettes (snapshots) of all
particles, extracted a variety of features from each vign-
ette and recorded relevant information into a metadata
file, a process taking 15–35 minutes, depending on the
number of particles in the sample. Initial efforts to scan
samples inside plastic trays placed onto the scanner
made it difficult to prepare large samples for scanning.

Ultimately, placing the zooplankton sample directly on
the glass also decreased sample preparation time.

The second section of ZooImage teaches the software
particle recognition. The vignettes and metadata were
sorted into a training set; a folder tree coinciding with
the category of taxonomic detail defined by the user.
The training set was used to create a “classifier” utiliz-
ing six different machine learning algorithms bundled
with ZooImage. Linear discriminant analysis (LDA)
uses linear combinations of measurements to discrimi-
nate between groups. Recursive partitioning tree (RPT)
creates decisional trees with each node discriminating
between randomly selected variables. K nearest neigh-
bor (KNN) and learning vector quantization (LVQ)
determine groups by minimizing distances between
training set particles and codebooks (a type of training
set summary), respectively. Neural networks (NN) utilize
a neural web with intermediary layers between the
input layer (measurements) and the output layer
(groups). Random forest (RF) creates several decisional
trees with each decision node discriminating between
two variables (for complete descriptions of the algor-
ithms see: LDA—Hastie et al., 1994; RPT and Random
Forest—Breiman, 2001; KNN—Peters et al., 2002;
LVQ—Tang et al., 1998; NN—Simpson et al., 1992).

Each classifier was evaluated using a 10-fold cross
validation confusion matrix to determine the error rate
between manual and automatic recognition. Cross vali-
dation is a method that randomly divides the training
set into 10 equal fractions. The learning phase uses
nine fractions and predicts the test set (or tenth frac-
tion). The process is repeated 10 times and results com-
bined into a confusion matrix where the diagonal (from
top-left to bottom-right) represents correct predictions
made by the computer, and values off the diagonal rep-
resent errors in predictions (Grosjean and Denis, 2007,
ZooImage User’s Manual).

The third step in ZooImage creates “series”. Series are
defined by the user as specific combinations of zooplank-
ton samples that assess ecological and biological patterns.
ZooImage uses the processed images and the classifier to
automatically identify all particles in the samples
included in the series. Simultaneously, ZooImage calcu-
lates species abundances, biomasses and the size spectra
of each sample and then records this information in a file
exportable to Microsoft Excel, Matlab, etc. This process
was completed in less than 5 min, depending on the
number of samples contained in the series.

Creation of the training set

ZooImage relies on a training set to teach the computer
to identify zooplankton. The training set was established
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by selecting organisms from preserved zooplankton
samples collected from Prince William Sound and the
Gulf of Alaska. Undamaged organisms for the training
set were chosen to represent typical individuals of the
most common taxa in Prince William Sound with
identification verified by an experienced taxonomist. For
species that were generally abundant in the study area,
30 specimens of a taxon were selected, while we only
succeeded in finding as few as 10 individuals for some
of the rarer categories. The individuals of each taxon
were scanned multiple times, with mixing of the
sample’s fluid and rearrangement between scans to
maximize the number of orientations captured by the
scanner. ZooImage was used to process the images and
extract vignettes.
The training set generally followed the level of detail

used by taxonomists conducting zooplankton studies in
Prince William Sound; e.g. copepod taxa were evalu-
ated to genus and stage, while other taxa were com-
bined at coarser taxonomic levels (e.g. barnacle nauplii).
The training set was developed using 100 vignettes per
taxon that were selected to represent the standard con-
dition and orientation of each organism. The training
set also included categories for “discards”, such as
marine snow, non-biological particles (e.g. debris and
fibers) and biological particles found in high abun-
dances in zooplankton samples but not included in the
taxonomic work (e.g. phytoplankton and calanoid
nauplii). Discard categories were developed using a
combination of vignettes from scanning the organisms
(fibers were in all scans) and adding marine snow vign-
ettes from several different sample scans. It is essential
to include these discards in the training set so they can
be classified correctly and removed before beginning
analysis.
Finally, the training set started at the highest level of

taxonomic detail possible and was reworked several
times to maximize predictive ability while attempting to
maintain a high level of taxonomic distinction. In some
instances, it was beneficial to combine copepod stages
or remove rarer species that were confounding the
identification of more common species.

Validation samples

Taxonomically identified zooplankton samples were
used for the comparison against ZooImage predictions.
Plankton samples were collected in 1997 by Prince
William Sound Aquaculture Corporation (Cordova,
AK, USA) at a remote hatchery (Armin F. Koernig) in
Prince William Sound using a 0.5 m diameter, 243 mm
mesh ring-net towed vertically from 20 m depth to the
surface. Plankton samples consisted of 1–3 pooled

vertical tows. Taxonomic work on the plankton samples
was completed in 1997 and samples were placed in
storage until 2006. For ZooImage validation, 53 of the
original 1997 plankton samples were utilized in the
comparison.

Sample preparation

Samples were strained onto a 150 mm mesh screen and
rinsed into a Folsom splitter using artificial seawater.
Each sample was split to obtain the same fraction used in
the earlier taxonomic analysis (typically 1/64–1/8). The
fractionated sample was diluted to 250 mL with artificial
seawater and placed into the frame for scanning. To
improve accuracy in identification, particles were superfi-
cially dispersed to spread the sample and reduce the
number of particles touching each other and the edges of
the images. Splitting of a sample and preparing it for
scanning were accomplished in under 10 min.

ZooImage limits the image size that can be imported
(approx. 10 cm � 10 cm). This required the area con-
taining the fractionated sample (approx. 19 cm �
23 cm) to be split into six smaller sub-images. BATCH
mode in VueScan 8.3.23 was utilized to create the sub-
images. All sub-images from a fractionated sample were
processed individually and re-combined for automatic
classification. ZooImage ignores particles touching the
edges of the sub-images during vignette extraction, and
consequently allows a percentage correction for this
bias. We determined the “cell-part” correction for frac-
tionated samples by counting all particles touching the
edges of randomly selected sub-images of 26 different
fractionated samples. The total number of edge particles
was divided by the total number of particles in each
sub-image and then the average for the 26 samples was
obtained.

Determining ZooImage accuracy

The accuracy of ZooImage automatic recognition was
evaluated by comparing the computer prediction
against the manual identification of vignettes from 20 of
the 53 validation samples. Discard categories (i.e. debris,
fiber, marine snow, calanoid nauplii and phytoplankton)
made up the majority of the particles and were labeled
as DTP (discard true positive) if the particle was cor-
rectly identified into a discard category. If the computer
identification was incorrect there were two options: DFP
(discard false positive) if the particle was identified as a
discard but was actually something else or DFN (discard
false negative) if the particle was identified as something
outside the discard categories. Generally, copepods were
the next most abundant groups, so determining the
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accuracy in prediction of copepods was similar: CTP
(copepod true positive) if the particle was correctly
identified as a copepod, CFP (copepod false positive)
when the computer identified a particle as a copepod
and it was not, and CFN (copepod false negative) when
a particle was actually a copepod but was identified as
something other than a copepod. If a particle was
labeled CTP, then it was further evaluated to determine
if the computer correctly identified it to group (e.g.
copepod) or had the right genus but the wrong stage
(e.g. Pseudocalanus copepodite I versus Pseudocalanus cope-
podite II). For additional analysis, copepods were separ-
ated into size classes using established measurements
from taxonomists working in Prince William Sound:
small (,0.9 mm), medium (0.91–1.50 mm) and large
(.1.51 mm). Particles in all other categories were
labeled C (correct) or I (incorrect) or NC (not classified)
for particles that were misidentified because they were
organisms not represented in the training set. The error
associated with automatic recognition fell into two cat-
egories: user error and machine error. User error was

defined as misidentifications caused by sample set-up
(e.g. bad images or touching particles). Machine error
was defined as misidentifications due to inconsistencies
in particle identification.

R E S U LT S

Training set

Based on the ongoing taxonomic work conducted in
Prince William Sound, the training set was established
with 63 categories that accurately reflected zooplankton
community composition (Table I). The classifiers
created from the initial training set using ZooImage’s
six different algorithms showed large differences in the
k-fold cross validation error, ranging from 63 to 15%
(Table II). Random forest was selected for the continued
work because it produced the lowest k-fold cross vali-
dation error. The training set was established by com-
bining and removing individual taxa to minimize the

Table I: Categories used to create training sets

Original Set Final Set Original Set Final Set

Amphipoda Amphipoda N. plum/flem II N. plum/flem II
Copepoda Copepoda N. plum/flem III N.plum/flem III

Acartia II Acartia II N. plum/flem IV N. plum/flem IV
Acartia III Acartia III,IV,V,F,M N. plumchrus V N. plum/flem V
Acartia IV N. flemengeri V
Acartia V Oithona Oithona
Acartia Female Pseudocalanus I Pseudocalanus I
Acartia Male Pseudocalanus II Pseudocalanus II
Calanoid nauplii Calanoid nauplii Pseudocalanus III Pseudocalanus III
Calanus III Calanus III Pseudocalanus IV Pseudocalanus
Calanus IV Calanus IV Pseudocalanus V F IV, V, F, M
Calanus V Calanus V Pseudocalanus V M
Calanus VI Calanus VI Chaetognatha Chaetognatha
Centropages IV Cirripedia cyprids Cirripedia cyprids
Centropages V Cirripedia nauplii Cirripedia nauplii
Centropages Female Cnidaria Cnidaria
Centropages Male Cyphonautes Cyphonautes
Eucalanus nauplii Eucalanus nauplii Discards Discards
Eucalanus I Eucalanus I debris debris
Eucalanus II Eucalanus II fiber fiber
Eucalanus III Eucalanus III marine snow marine snow
Eucalanus IV Eucalanus IV Euphausiacea Euphausiacea
Eucalanus V Eucalanus V calytopids calytopids
Metridia I Metridia I eggs eggs
Metridia II Metridia II furcillids furcillids
Metridia III Metridia III metanauplii metanauplii
Metridia IV Metridia IV nauplii nauplii
Metridia V Female Metridia F, M Larvaceans Larvaceans
Metridia V Male Fritillaria Fritillaria
Neocalanus cristatus III N. cristatus III Oikopleura Oikopleura
N. cristatus IV N. cristatus IV Phytoplankton Phytoplankton
N. cristatus V N. cristatus V Polychaete larva Polychaete larva
N. plumchrus/flemengeri I N. plum/flem I Shrimp Shrimp

Thaliacea Thaliacea

The original training set contained 63 categories; the final training set contained 53 categories.
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k-fold cross validation error. The training set was
reduced to 53 categories (Fig. 1) with a final k-fold cross
validation ¼ 12.54% (0–36% for each taxon).

Validation samples

ZooImage results were compared to taxonomically ident-
ified samples, in order to determine the ability of Zoo-
Image to detect patterns in field-collected samples. Prior
to the analysis, ZooImage and taxonomic abundances
were log-transformed to satisfy tests for heteroscedasticity
and normalacy (SigmaPlot v11). Additionally, a one to
one relationship was assumed so the regression was forced

Fig. 1. The Confusion matrix for the 53 categories of the training set using the random forest algorithm. Rows are taxonomic classification and
columns are automatic recognition of the same classifications. The diagonal represents correct identifications and points outside the diagonal
represent errors in classification; the darker the color, the higher the value in the cell.

Table II: The six machine algorithms bundled
with ZooImage and their k-fold cross
validation errors based on a 63 category
training set

Algorithm
k-fold cross
validation error (%)

Linear discriminant analysis 41.3
Recursive partitioning tree 63.4
K nearest neighbor 51.6
Learning vector quantization 59.0
Neural network 35.5
Random foresta 15.2

aThis algorithm was utilized in evaluating ZooImage.
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through zero. When total number of biological particles
was assessed, ZooImage did a reasonable job of detecting
those particles. Only one sample (April 4), which was
dominated by small barnacle nauplii, was misidentified;
removing this point from the analysis yielded a better
relationship between ZooImage and taxonomic abun-
dances (Fig. 2). Copepods were the dominant biological
particles in most samples and ZooImage was more

effective at capturing the trends in copepod abundance
(Fig. 3). Comparing size classes of copepods between taxo-
nomic and ZooImage results demonstrated that ZooImage
was not as reliable in detecting small copepods (Fig. 4). In
contrast, ZooImage was very successful at classifying
medium-sized copepods (Fig. 5), which was the most
abundant size class in most samples. Euphausiid eggs
were the only other group present in all samples in great

Fig. 2. Comparison of ZooImage and taxonomic abundances of biological particles. (A) Comparison of trends between ZooImage and
taxonomic abundances; *indicates a taxonomic sample dominated by small barnacle nauplii that were not effectively identified by ZooImage.
(B) Relationship between taxonomic and ZooImage abundances of biological particles. W indicates a taxonomic sample dominated by small
barnacle nauplii; this point was removed from analysis.
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enough numbers to make reasonable comparisons. Unfor-
tunately, ZooImage was not effective at identifying
euphausiid eggs. The poor fit of this relationship was
driven by one sample, in which ZooImage was unable to
correctly identify euphausiid eggs; removing this sample
point substantially improved the relationship (Fig. 6). All
other groups did not occur in a sufficiently large number
of samples or at a high enough abundance to make effec-
tive comparisons; this included large copepods.

ZooImage accuracy

ZooImage accuracy was assessed by comparing auto-
matic recognition and actual identification of all par-
ticles in 20 samples. Discards were abundant and
accounted for more than 75% of particles in all
samples. Copepods had the second highest abundance
in most samples but were surpassed in several samples
by euphausiid eggs. The top five categories were

Fig. 3. Comparison of ZooImage and taxonomic copepod abundances. (A) Comparison of trends between ZooImage and taxonomic copepod
abundances. (B) Relationship between taxonomic and ZooImage copepod abundances.
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relatively consistent between samples; copepods,
euphausiid eggs, euphausiid nauplii, bryozoa larvae and
barnacle nauplii were common in the early April
samples, while meta-nauplii replaced barnacle nauplii
in May samples (Fig. 7).
ZooImage correctly identified particles 81.7% of the

time, with 18.3% error arising from 2.3% user error
and 16.0% machine error (Fig. 8). Discard categories
accounted for less than 5% of the machine error

(DFN¼3.9%, DFP¼1.0%). When discards were
removed, ZooImage correctly identified the remaining
particles 63.3% of the time with 31.3% machine error
and 5.4% user error (Fig. 8). Further assessment of the
samples showed copepods were correctly identified
67.8% of the time with user error of 4.7%, CFN of
12.5% and CFP of 15.4% (Fig. 9).

While copepods were the numerically dominant
taxon in most samples, the level of taxonomic detail

Fig. 4. Comparison of ZooImage and taxonomic small copepod abundances. (A) Comparison of trends between ZooImage and taxonomic
small copepod abundances. (B) Relationship between taxonomic and ZooImage small copepod abundances.
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expected proved challenging for automatic recognition
making the assessment of accuracy to genus level diffi-
cult. For example, ZooImage, in general, correctly
classified particles as Pseudocalanus sp. but incorrectly
identified Acartia sp. as Pseudocalanus sp. as well.
Because of this, accuracy of automatic recognition was
evaluated based on size classes (small, medium and
large) of copepods. ZooImage only correctly identified
large copepods with 59.4% correct identification

and 40.6% errors (CFN ¼ 3.3%, CFP ¼ 29.6%,
user ¼ 7.7%) (Fig. 9). ZooImage achieved slightly
better results when identifying small copepods, with
correct identification of 62.5% and errors of 37.5%
(CFN ¼ 10.2%, CFP ¼ 23.7%, user ¼ 3.6%) (Fig. 9).
ZooImage achieved the best results when identifying
medium copepods; correct identification ¼ 73.3% with
errors ¼ 26.7% (CFN ¼ 14.6%, CFP ¼ 7.3%, user ¼
4.8%) (Fig. 9).

Fig. 5. Comparison of ZooImage and taxonomic medium copepod abundance. (A) Comparison of trends between ZooImage and taxonomic
copepod abundances. (B) Relationship between taxonomic and ZooImage medium copepod abundances.
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D I S C U S S I O N

At present, it appears unlikely that the image analysis
will completely replace manual processing of zooplank-
ton samples in the near future. Consequently, sample
processing will remain the bottleneck (Ellis et al., 1994)
in large-scale projects. In many cases, however, a
coarser level of taxonomic detail may be sufficient and

image analysis could provide an appropriate level of
discrimination. Image analysis systems can only be
effective if they possess certain characteristics. The
identification of zooplankton must be achieved with
enough accuracy to draw conclusions about community
composition. Additionally, image analysis systems
should require limited technical expertise and accelerate

Fig. 6. Comparison of ZooImage and taxonomic abundances of euphausiid eggs. (A) Comparison of trends between ZooImage and taxonomic
abundances of euphausiid eggs. * indicates a sample where ZooImage incorrectly identified euphausiid eggs. (B) Relationship between
taxonomic and ZooImage euphausiid egg abundance. W indicates a sample where ZooImage incorrectly identified euphausiid eggs and was
removed from the analysis.
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zooplankton sample processing (Gorsky et al., 1989;
Culverhouse et al., 2006). ZooImage demonstrates these
attributes for examining preserved zooplankton samples.
The ability of ZooImage to correctly identify particles

is directly related to how well the training set represents
and encompasses the zooplankton present in the
samples to be analyzed (Culverhouse et al., 1994;
Embleton et al., 2003). Potentially, refining both the
training set and user setting of the software might yield
further improvement in accuracy. The proximal goal of
our effort, however, was simply to ascertain the typical
level of taxonomic classification possible by routine
users of ZooImage, based on a training set developed
with a moderate amount of effort, that was then applied
to field-collected zooplankton samples in Prince William

Sound. While studies have focused on discriminating
phytoplankton species (Ishii et al., 1987, Estep and
MacIntyre, 1989; Gorsky et al., 1989; Embleton et al.,
2003; Hense et al., 2008), and microzooplankton
(Culverhouse et al., 1994) using image analysis, little work
has been conducted on preserved zooplankton samples
(Samson et al., 2001). Although, ZooImage (version
1.2-1) is still in development, as are the techniques
associated with its application, it does show promise as a
rapid, yet effective, image analysis/recognition system for
examining zooplankton composition.

In this study, “Random Forest” was used to develop
the training set in a highly iterative process that
required consolidation and/or removal of the initial 63
categories to yield the highest overall accuracy in

Fig. 7. Comparison of top five most abundant zooplankton categories identified by ZooImage (top) and manually (bottom). Based on the
number of correct identifications; “other” combines all groups outside the top five.
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identification with the highest level of taxonomic detail,
both in the training set and when applied to real
samples. The final training set of 53 categories (Table I)
was designed to obtain the smallest k-fold cross vali-
dation error but maintain a high level of taxonomic dis-
tinction so field collected samples could be effectively
analyzed. The number of categories used in this study
exceeds that used in other studies (Grosjean et al., 2004;
Benfield et al., 2007) and despite encouraging results
from the training set (i.e. .85% correct identifications),

results were less definitive when ZooImage was used for
automatic recognition of zooplankton communities
within field collections.

There may be several explanations for the disparity
between the training set results and those obtained from
the preserved samples. Differences can arise because
the training set was built with only ideal images of par-
ticles of interest, whereas in field samples the computer
has to classify all particles, including numerous discard
categories and those particle images that would be

Fig. 8. Accuracy of ZooImage identification in 20 fractionated samples. (A) All particles. (B) Biological particles.

Fig. 9. Accuracy of ZooImage’s identification of copepods with respect to size, and the associated user and machine errors.
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challenging even for an expert to classify (Hu and
Davis, 2006). A taxonomist analyzing samples also has
the ability to re-orient zooplankters to facilitate accurate
identifications, while automated systems are constrained
by the orientation of the scanned particles (Culverhouse
et al., 2003). Finally, the technique for creating the train-
ing set used in this study may have contributed to some
of the differences in accuracy between the training set
and the samples. Using a limited number of organisms
and incorporating different views of those organisms
may not have provided sufficient baseline information
about the groups to accurately identify them in field
samples. A larger number of organisms, each rep-
resented by a single image, are suggested for future
applications.
The accuracy of ZooImage was assessed by compar-

ing the computer identification of each particle to the
visual identification of each particle image. Evaluating
the accuracy of ZooImage identification is challenging
because it has been suggested that even experts can,
and do, make mistakes when identifying plankton
(Culverhouse et al., 2003). However, the diversity of zoo-
plankton in Prince William Sound is limited and this,
coupled with the established categories (e.g. combining
Pseudocalanus sp. IV, V, M and F), may reduce errors
associated with mistaken staging which is likely to be
more prevalent than mistaken species identification.
When all particles were incorporated, ZooImage had

greater than 80% accuracy when identifying all par-
ticles in a sample. Discards made up only 5% of the
remaining errors despite being the dominant group in
all samples. This suggests that ZooImage does a reason-
able job detecting ill-defined particles that are difficult
to standardize. These results are consistent with the
analysis of in situ devices where accuracy dropped from
90 to 75% when unidentifiable particles were part of
the data set (Luo et al., 2003). Copepods made up the
majority of biological particles in most samples, and
typically contain high diversity. While, 67.8% of the
biological particles were correctly identified as cope-
pods, ZooImage was less effective at separating cope-
pods into genera. There has been limited success using
diffraction patterns to obtain differentiation between
two genera of copepods, Calanus sp. and Acartia sp.
(Zavala-Hamz et al., 1996), between five different
copepod genera (Castro-Longoria et al., 2001) and four
Acartia species (Alvarez-Borrego and Castro-Longoria,
2003). While the training set analysis suggested an
ability to identify several different genera, for field
samples the system was only proficient at classifying a
few of these categories, suggesting that size rather than
taxonomy might be a better characteristic for achieving
improved accuracy.

It appears that ZooImage’s machine learning algor-
ithms relied heavily on length and equivalent circular
diameter (ECD) to discriminate between organisms
within our training set. There were few incidents where
organisms that are normally of different sizes were con-
fused; e.g. Calanus sp. and Pseudocalanus sp., despite
similar body shapes were rarely confused. The image
analysis extracts numerous values from the images,
including ECD and attributes such as optical density;
however, it is the classification algorithm that decides
which of those indices contribute to the classification.
The algorithms used by ZooImage do not rely on ECD
by default, but indicate that ECD was one of the most
informative parameters to distinguish the categories in
our training set and its consequent application to field
samples.

Nonetheless, the use of size also introduced problems
when identifying large copepods. Essentially, large cope-
pods (e.g. Neocalanus sp., Calanus sp. and Eucalanus sp.)
were the biggest items in the training set, so usually
large non-biological particles and marine snow (not rep-
resented in the training set) were generally misclassified
as large copepods. This problem could be minimized
by removing large “discard” particles prior to scanning,
eliminating large copepods from the training set that
were readily confused but not very abundant (e.g.
Eucalanus sp.), adding larger “discard” particles to the
training set, or size fractioning the sample to analyze
large particles separately. Appropriate staining of
samples prior to analysis might further aid the discrimi-
nation of biological from non-biological particles, by
raising the importance of optical density in the classifi-
cation algorithms, and this possibility warrants consider-
ation in future studies.

Small copepods confused the automatic recognition
algorithm, possibly due to a size threshold, below which
the scanner does not capture sufficient detail (in terms
of number of pixels); this was particularly true for small
complex particles, i.e. particles with appendages that
create irregular outlines. Particles with complex mor-
phology may be more difficult to accurately identify
(Culverhouse et al., 2003). This may explain the high
machine error when classifying small copepods, such as
Pseudocalanus sp. (copepodite I, II), Metridia sp. (copepo-
dite I, II) and Oithona sp., as discards (e.g. debris and
marine snow) or other small biological particles (e.g.
euphausiid eggs, copepod nauplii, small barnacle
nauplii).

Finally, euphausiid eggs dominated abundance in
some samples and were second only to copepods in
many samples, yet ZooImage struggled with their
correct identification. Typically, a euphausiid egg
appears as a black spherical embryo surrounded by a
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clear egg capsule, which may be detected as two par-
ticles: one small circular object and one long thin
object. Generally, the first was misidentified as phyto-
plankton and the second as a fiber, both in categories
that were removed prior to analysis.
A second goal of this study was to examine how well

ZooImage captured the trends of zooplankton taxa and
abundance in zooplankton samples. ZooImage was suc-
cessful at finding patterns in total particles (R2 ¼

0.8779) and was even better when examining just cope-
pods (R2 ¼ 0.9137) suggesting ZooImage may be
capable of capturing trends present in field samples.
Furthermore, the relationships described by the
regressions indicate no systematic error (i.e. slope ¼ 1),
signifying errors in processing were due primarily to
machine and user errors. Inconsistency between
ZooImage and manual abundances may have several
causes. Although the fraction of the sample examined
by both approaches was the same, each represented an
independent sub-sampling of the collection, so there is
not an exact correspondence of particles. Additionally,
discards make up the majority of particles in a sample,
and since they were deleted any misidentification of
organisms as discards (DFP ¼ 1.0%) were also
removed, thus lowering the total zooplankton abun-
dance seen by ZooImage. For example, small barnacle
nauplii were prevalent in samples from the beginning of
the series and were not identified accurately by
ZooImage. Ultimately, they were classified as calanoid
nauplii and removed from total counts, thus, creating a
divergence from manual counts.
This study utilized ZooImage (version 1.2-1) without

modification. That is, there was no reconfiguration of
the original software to obtain better results. With this
configuration, ZooImage requires little technical exper-
tise; the software is designed to lead the user through
importing and processing images as well as creating
series of ecological parameters such as abundance and
biomass. The creation of training sets, both the most
time consuming and the most important aspect of
ZooImage, requires taxonomic experience to correctly
identify organisms placed in the training set. Evaluation
through k-fold cross validation and confusion matrices
guides the user in creating an effective training set. The
time to create a training set will vary depending on the
number of different organisms in the environment
being studied, the questions being asked and the taxo-
nomic experience of the user.
Preparing the sample for scanning was completed in

only minutes and typically consisted of moving particles
away from the edges of the image and superficially sep-
arating touching particles. ZooImage allows the user to
correct for biases in edge particles, but does not correct

for user errors. The average user error for bad images
or touching particles of 2.33% for all particles (5.40%
for biological particles) supports the idea that this bias is
minimal compared to machine identification errors;
therefore, in practice, little time needs to be spent pre-
paring the samples. Furthermore, the errors generated
by misidentification of touching particles are relatively
small and did not exceed errors that typically occur
when working with zooplankton samples (e.g. splitting
errors with expected coefficients of variances between
4.8 and 30.5%) (Guelpen et al., 1992; Postel et al.,
2000), and may be offset by the larger number of bio-
logical particles that can be enumerated by ZooImage
compared to traditional processing.

In summary, the amount of time ZooImage requires
to arrive at ecological parameters is much less than the
time needed to manually process zooplankton samples.
It took ,20 min to split and scan each sample,
�35 min for ZooImage to process an entire fractionated
sample and only minutes to report abundance (m23)
and biomass. The ability to obtain quantitative results
from a zooplankton sample in under an hour demon-
strates that ZooImage decreases processing time com-
pared to traditional microscopic analysis which can take
several hours. Without demonstrating ability to acceler-
ate sample processing, automated analysis would be of
limited utility (Estep and MacIntyre, 1989; Grosjean
et al., 2004).

The purpose of this project was to determine the
effectiveness of ZooImage as a tool for assessing com-
munity composition in preserved zooplankton samples.
Processing samples was rapid and efficient and results
demonstrated ZooImage’s ability to provide useful infor-
mation. Future versions of ZooImage may incorporate
human identification of particles that the software is
uncertain about, thus, increasing the accuracy of par-
ticle identification. Additionally, because ZooImage is
open source software, it can be modified to accommo-
date many different needs which will ultimately improve
the system for all users. At this time, ZooImage shows
real promise as a tool for rapid processing of preserved
zooplankton samples.
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